Импульсный блок питания – подборка схем для самостоятельного изготовления

В быту часто необходим мощный источник питания на фиксированное напряжение. Он может быть использован в качестве зарядного устройства, для питания звуковой аппаратуры (усилителей) и т.д. Подобные блоки питания целесообразно выполнять по импульсной схеме. Такая схемотехника позволяет создавать легкие и мощные источники постоянного напряжения. Сложность схемы начинает отходить на второй план перед ее преимуществами уже при токах нагрузки более 2А. Сделать импульсный блок питания можно своими руками при наличии приборов и определенной квалификации.

Виды и принцип работы импульсных источников питания

Основной принцип работы импульсного источника питания (ИИП) состоит в том, что постоянное напряжение (выпрямленное сетевое или от стороннего источника) преобразовывается в импульсное частотой до сотен килогерц. За счет этого намоточные детали (трансформаторы, дроссели) получаются легкими и компактными.

Принципиально ИИП делятся на две категории:

  • с импульсным трансформатором;
  • с накопительной индуктивностью (она также может иметь вторичные обмотки)

Первые подобны обычным трансформаторным сетевым блокам питания, выходное напряжение у них регулируется изменением среднего тока через обмотку трансформатора. Вторые работают по другому принципу – у них регулируется изменением количества накопленной энергии.

По другим признакам ИИП можно разделить на нестабилизированные и стабилизированные, однополярные и двухполярные и т.п. Эти особенности не носят столь принципиального характера.

Структурная и принципиальная схема основных частей блока

На входе блока питания устанавливается сетевой фильтр. Принципиально на работу самодельного или промышленного импульсного блока питания он не влияет – все будет функционировать без него. Но отказываться от схемы фильтрации нельзя – из-за крайне нелинейной формы потребляемого тока импульсные источники интенсивно «сыплют» помехами в бытовую сеть 220 вольт. По этой причине работающие от этой же сети устройства на микропроцессорах и микроконтроллерах – от электронных часов до компьютеров – будут работать со сбоями.

Обоснованной методики расчета снаббера не существует. Для этого надо учесть все паразитные индуктивности (обмотки, дорожек, конденсаторов) на множестве частот и для неизвестных волновых сопротивлений. Поэтому все существующие расчеты носят эмпирический характер.

Основным (и единственным) действующим элементом демпфера является конденсатор. Он «поглощает» импульсные выбросы. Резистор лишь ухудшает демпфирующие свойства, но ограничивает ток через конденсатор, который может достигнуть значительных величин, хотя и кратковременно. Такая схема более актуальна в тиристорных преобразователях.

Что такое снаббер или демпфер можете узнать посмотрев видео.

В схемах RCD-снабберов (в и г на рисунке) присутствуют диоды. Они могут быть полезны для ограничения импульсов обратной полярности в схемах с тиристорами и биполярными транзисторами. Если ключи собраны на полевых или IGBT-транзисторах, то смысла в установке вентилей нет – они дублируют диоды, имеющиеся внутри указанных транзисторов.

Емкость конденсатора выбирается в пределах 0,1–0,33 мкФ. В 90+ процентах случаев этого достаточно. Увеличение или уменьшение номинала применяется для ключей, работающих в нестандартных условиях (повышенная частота преобразования и т.п.)

Выпрямитель

Напряжение вторичной обмотки надо выпрямить. Для уровней до 12 вольт желательно использовать двухполупериодную схему со средней точкой.

Назначение выводов приведено в таблице.

Обозначение Назначение Назначение Обозначение
1 Vcc Питание логики и драйверов Питание выходных ключей Vb 8
2 Rt Резистор частотозадающей цепи Выход верхнего драйвера HO 7
3 Ct Конденсатор частотозадающей цепи Возврат питания верхнего драйвера Vs 6
4 COM Общий Выход нижнего драйвера LO 5

Для наилучшего понимания работы и назначения выводов лучше изучить внутреннюю схему. Основной момент, на который надо обратить внимание – выходные ключи собраны по полумостовой схеме.

На этой микросхеме можно собрать простой блок питания.

Более сложная схема — с защитой транзисторов от сверхтока. Измерение организовано на трансформаторе TV1. Он мотается на ферритовом кольце диаметром 12..16 мм. Вторичная обмотка содержит 50..60 витков в два провода диаметром 0,1..0,15 мм. Потом начало одной обмотки соединяется с концом второй. Первичная обмотка содержит 1..2 витка. Уровень срабатывания защиты регулируется потенциометром R13. При превышении установленного лимита срабатывает тиристор VD4 и шунтирует стабилитрон VD3. Напряжение питания микросхемы уменьшается почти до нуля.

В схеме БП предусмотрен мягкий старт. Если генерация началась, импульсы с вывода 6 через делитель R8R9 и конденсатор С8 выпрямляются. Постоянное напряжение заряжает С7 и открывает транзистор VT1. Конденсатор С3 подключается к частотозадающей цепочке и частота генератора микросхемы снижается до рабочей частоты.

Несложный блок питания можно собрать на основе мощного полевого транзистора. Особенностью схемы является использование первичной обмотки трансформатора в качестве индуктивности, накапливающей энергию. Этим блок питания принципиально отличается от рассмотренных выше. Хотя он содержит многие элементы приведенной блок-схемы, работают большинство из них по-другому принципу.

Если все нормально, можно подавать напряжение 220 вольт и приступать к наладке устройства. Первое включение в сеть (да и последующие после переделок или при наладке) надо делать через лампу накаливания на 220 вольт, включив ее в разрыв провода питания.

Если в схеме что-то не так, лампа вспыхнет, сигнализируя о неисправности. Если все в порядке, лампа гореть не будет или будет светиться в полнакала. На выходе надо нагрузить БП хотя бы одной автомобильной лампой на 12 вольт – без этого некоторые источники не запустятся.

Импульсный блок питания – не самое простое электронное устройство. Успех сборки и эксплуатации зависит от разных факторов, в том числе от конструктива устройства. На работоспособность влияют, например, тщательность изготовления намоточных деталей или топология разводки печатной платы. Рекомендуется сначала повторить уже опробованную конструкцию, и, по мере наработки опыта, творить что-то свое.

В завершении для наглядности рекомендуем к просмотру серию тематических видеороликов.

Оцените статью
Информационный ресурс для любителей компьютеров и IT технологий